

Smart Wheelchair: Brain-actuated and semi-autonomous assistive device interface

Mario De Lorenzo^{1,2}, Mohor Bhowmick¹, Kaustav Bora³, Ashley Siddiqui¹, Hasan Ayaz²

¹College of Engineering, Drexel University, USA

²School of Biomedical Engineering, Science and Health Systems, Drexel University, USA

³College of Computing & Informatics, Drexel University, USA

Contacts: md3466@drexel.edu
+1 267-476-5225

Why the need for a Smart Wheelchair?

- 2.1 million people worldwide are powered wheelchair users (Simpson et al., 2008).
- Up to 91% would benefit from a smarter operating standard mobility device (Simpson et al., 2008).

Conventional motorized wheelchairs' interfaces use:

- joysticks
- head/chin control
- tongue control
- face/gaze control

all of which require fine motor control, continuous movement, or posture maintenance that patients have difficulties keeping up (Al Sibai & Manap, 2015).

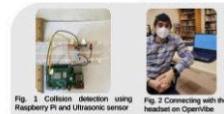


Fig. 1 Collision detection using Raspberry Pi and Ultrasonic sensor

Fig. 2 Connecting with the headset on OpenVibe

What is a Smart Wheelchair?

Our Smart Wheelchair will provide safe semi-autonomous driving without the need for muscle movements by implementing:

- Motor-Imagery based mobile EEG-BCI to control navigation
- Collision avoidance sensors

This assistive device interface will help people suffering from **locked-in syndrome** in order to regain mobility and improve their quality of life.

This Smart Wheelchair aims to provide greater accessibility and ease of use for severely disabled patients that can be installed in any motorized wheelchair.

Design and Approach

User Brain Activity
Electroencephalogram

Collision Avoidance Ultrasonic sensor #3

Collision Avoidance Ultrasonic sensor #2

Collision Avoidance Ultrasonic sensor #1

Feedback & Emergency Break

Processing Interface Raspberry Pi + LCD Screen

Monitor

Collision avoidance

Generated Command

Control wheelchair to move forward, left, right or still

Start

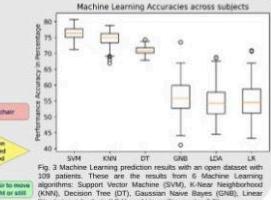
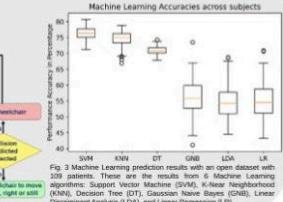
Object

End

Navigation

Anti-collision

Stop wheelchair



Yes

Continue predicted output

No

Control wheelchair to move forward, left, right or still

Data Pipeline and Results

Implementation

The experimental testing session consists of:

- **BCI-training**, the patient is seated on the Smart Wheelchair, an LCD monitor will show the MI tasks for execution to collect labeled data and train the model
- **BCI-test**, the patients execute the same MI to control the Smart Wheelchair to move around a simple circuit.
- **Safe navigation test**, examine the ability of the control system to safely navigate the patient to the desired location will be tested.

References

Al Sibai, M. H., & Manap, S. A. (2015). A Study on Smart Wheelchair Systems. *INTERNATIONAL JOURNAL OF ENGINEERING TECHNOLOGY AND COMPUTER SCIENCE (IJETCS)*, 4(1). <https://doi.org/10.15260/ijetcs.4.2015.1.4-2013>

Simpson, R. C., Lopresti, E. F., A. Compton, and C. D. H. (2008). Is there a place for a smart wheelchair? *Journal of Rehabilitation Research and Development*, 45(1), 63–72. <https://doi.org/10.1682/JRRD.6. pp. 1034-1043. Jun. 2004>.

<http://www.unicorn-ts.com/>

<http://openvibe.inria.fr>

<http://www.vitalimobility.ca/Quantum-QE-Egic-Power-Wheelchair.php>

<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699587/>

<https://doi.org/10.31219/58517421499587>

<https://doi.org/10.31219/58517421499587>