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Abstract 

Post surgical brain imaging creates a unique challenge in MRI analysis. When cortical 
tissue is removed during resection procedures, the anatomy of the brain changes in 
ways that traditional imaging pipelines cannot interpret. Many standard tools assume a 
complete brain structure, which leads to inaccurate masks, incorrect region boundaries, 
and unreliable functional connectivity measurements. 

This work presents a machine learning framework that produces accurate tissue 
segmentation for MRI scans taken after a surgical resection. The approach uses 
deformable registration, nuisance regression, and a three dimensional convolutional 
neural network that learns the shape and structure of the post operative brain. The 
method develops a patient specific mask that reflects the true shape of the brain after 
surgery. 

The results show improvement in segmentation accuracy around resection areas. The 
method produces clearer anatomical boundaries and stronger agreement with expert 
interpretation. This study demonstrates how machine learning can support clinical 
imaging by creating tissue maps that reflect each patient’s unique postoperative 
anatomy, and it encourages the use of computational tools in advanced neuroimaging 
workflows. 

1. Introduction 

Brain imaging plays a central role in understanding neurological function and guiding 
clinical treatment. Magnetic Resonance Imaging is one of the most important tools 
available to clinicians, and it supports diagnosis, monitoring of disease progression, and 
evaluation of surgical outcomes. When a patient undergoes a resection procedure, the 
structure of the brain changes in a way that requires specialized interpretation. Regions 
of tissue are removed to treat epilepsy, tumors, or other neurological conditions, and the 
resulting postoperative scans contain cavities, shifted landmarks, and altered 
anatomical borders. These changes create a complex environment for automated 
segmentation systems. 

Conventional neuroimaging pipelines are often created for healthy or intact anatomical 
structures. They use templates or population averages that assume the presence of 
complete tissue regions. When these methods are applied to a postoperative scan, they 
may produce missing labels, inconsistent boundaries, or masks that do not match the 
true shape of the brain. Accurate segmentation is essential because it influences every 
downstream analysis, including functional connectivity studies, structural mapping, and 
clinical evaluation. 



Machine learning provides an opportunity to create tissue masks that reflect the actual 
postoperative anatomy. Instead of relying on fixed templates, a learning based system 
can adapt to patient specific structures and can identify patterns that traditional 
algorithms cannot model. Three dimensional convolutional neural networks, deformable 
registration techniques, and automated masking tools can work together to examine 
regions that undergo physical change after surgery. This allows the system to create a 
representation of the brain that is closer to the true structure seen in the scan. 

The purpose of this study is to explore a computational approach that improves 
anatomical segmentation for patients who have undergone surgical resection. The 
method presented in this paper is designed to identify tissue boundaries with greater 
precision in areas affected by surgical alteration. The framework offers a pathway for 
creating postoperative segmentation that supports functional research, clinical review, 
and long term monitoring. The ultimate goal is to create imaging tools that are well 
suited to each individual patient and that contribute to more accurate scientific and 
clinical insight. 

2. Background 

2.1 Surgical Resection and Brain Imaging 

A resection procedure removes a portion of neural tissue in order to reduce seizure 
activity, remove abnormal growths, or correct anatomical problems. The removal of 
tissue alters the structure of the brain in both shape and spatial orientation. This 
process affects the surrounding tissue and changes the organization of cortical and 
subcortical regions. Magnetic resonance imaging captures the new structure of the 
brain and allows researchers and clinicians to study the effects of the procedure. 

However, the appearance of the brain after a resection contains features that standard 
segmentation models do not interpret correctly. Cavities may appear irregular, 
boundaries between tissues may shift, and structural landmarks used in automated 
systems may no longer exist. These unique changes require specialized algorithms that 
can map tissue without relying on rigid assumptions about shape or structure. 

2.2 Importance of Accurate Segmentation 

Segmentation identifies and separates tissue types so that further analysis can occur. It 
is crucial for measuring volume, monitoring the impact of treatment, and studying 
network level changes in connectivity. In functional MRI, segmentation determines 
which regions are included in network analysis. In structural MRI, segmentation defines 



the shape and size of tissue that researchers measure. In clinical review, segmentation 
supports evaluation of healing, scarring, or altered function. 

When segmentation does not reflect true anatomy, the results of later analysis become 
uncertain. An inaccurate mask may include non-tissue regions or exclude meaningful 
tissue. This can influence conclusions drawn from connectivity studies, structural 
volume estimates, and clinical reports. Accurate postoperative segmentation is essential 
for creating reliable scientific and clinical interpretations. 

2.3 Machine Learning in Medical Image Segmentation 

Machine learning introduces a flexible way to interpret complex brain images. Instead of 
relying on fixed rules, a model can learn from many examples of tissue structure and 
can identify features that are not obvious to conventional methods. Convolutional neural 
networks can detect three dimensional texture patterns and can interpret tissue 
boundaries even when landmarks are altered. Deformable registration algorithms allow 
the model to adjust to the unique structure of each patient and to map the brain without 
enforcing a single standard shape. 

These tools allow researchers to explore segmentation in brains that contain structural 
changes. They also encourage the development of patient specific imaging pipelines 
that match the individual anatomy seen in the scan. 

 PRE                                                           POST 

3. Related Work 

Segmentation is an active field in neuroimaging research. Many studies have explored 
ways to identify tissue types in healthy anatomical scans. Traditional tools are created 
for intact brains and rely on standardized templates. They are commonly used in 
research involving large populations. These tools can process scans efficiently and can 
create consistent labels when the brain follows expected structural patterns. 

Research in machine learning has expanded the ability to segment brain images by 
allowing models to learn spatial patterns in three dimensional data. Convolutional neural 
networks have achieved strong performance in differentiating tissue classes in medical 



imaging. They can analyze volume, intensity, and spatial relationships within the brain. 
Models such as U Net and variations of encoder decoder networks have been used 
successfully in various medical segmentation tasks. 

Studies involving postoperative imaging are more limited. The structural changes 
created by a resection require methods that can adapt to irregular shapes. Some 
research has investigated deformable registration for postoperative images. These 
methods adjust an anatomical template to match the new shape of the brain. Other 
research has introduced patient specific masks that account for altered structure. These 
approaches provide a foundation for developing learning based methods that 
understand the individualized shape of a postoperative brain. 

The work presented in this paper builds on these ideas by combining registration 
methods with a learning based segmentation model. The system is designed to interpret 
the unique patterns found in postoperative scans while maintaining the flexibility needed 
to adapt to structural differences between patients. 

4. Problem Statement 

Post surgical MRI scans contain structural features that do not appear in standard 
anatomical datasets. Resection cavities, altered tissue borders, and local geometric 
deformation create a situation where many common segmentation tools do not provide 
accurate masks. The core problem is the absence of a segmentation method that can 
read the postoperative anatomy in a reliable way. 

A segmentation model must learn the appearance of altered tissue regions. It must also 
recognize the shape of cavities that form after surgery. The system must interpret 
nearby structures without relying on assumptions drawn from intact brains. A model that 
produces masks for this environment requires exposure to patient specific changes and 
must treat each scan as a unique case. 

This creates a clear objective. The goal is to design a segmentation framework that 
reads the postoperative brain with attention to tissue shape, cavity structure, and spatial 
position. The framework must produce masks that match the true outline of the brain in 
the MRI volume. 

5. Methods 

This section describes the components of the segmentation system. The design follows 
a sequence that prepares the MRI scans, aligns them, and trains a model that predicts 
tissue masks with attention to postoperative anatomy. 



                  Figure 2. Postoperative Brain Tissue Segmentation Pipeline 

 

Figure 2. Overview of the postoperative brain tissue segmentation pipeline. Pre- and 
post-operative T1-weighted MRI volumes are first preprocessed through orientation 
alignment, skull stripping, and intensity normalization. A deformable registration step 
then estimates a deformation field that maps the pre-operative anatomy to the 
post-operative anatomy and captures local shifts around the resection site. The 
registered volumes and deformation information are passed to a three-dimensional 
convolutional neural network, which predicts a patient-specific postoperative tissue 
mask that outlines the brain and resection cavity. 

 

5.1 Dataset 

The imaging dataset contains pre operative and post operative MRI scans. Each scan 
presents two volumes from the same patient. The pre operative scan shows the 
structure that existed before tissue removal. The post operative scan shows the new 
anatomy created by the resection. 

The dataset includes T1 weighted volumes with consistent resolution. Each volume is 
inspected to confirm that the surgical cavity and surrounding structures are visible. 
Volumes with motion artifacts or incomplete slices are removed from the dataset to 
maintain quality. 

5.2 Preprocessing 

All MRI volumes are aligned to a common orientation. Each volume is skull stripped 
through a basic masking step that removes non brain tissue. This prepares the volume 
for registration and reduces unnecessary background information. 



Intensity values are normalized to reduce variation between scans. The goal is to create 
a stable input space for the segmentation model. Normalization is applied equally 
across all volumes. 

5.3 Registration 

A deformable registration algorithm aligns the pre operative and post operative scans. 
The purpose is to understand how the brain shifted after surgery and to supply the 
model with spatial context. The registration step produces a deformation field that maps 
the pre operative shape to the post operative shape. 

This deformation field provides information about local stretching, compression, and 
displacement. The model uses this information to understand the shape of the resection 
cavity and the surrounding structures. 

Figure 3. Example Deformation Field Between Pre- and Post-Operative MRI 

 
Figure 3. Example deformation field illustrating the spatial transformation between pre-operative 
and post-operative MRI volumes for a single patient. Vectors indicate local displacement of 
tissue induced by surgical resection, highlighting regions of expansion and compression around 
the resection cavity. This deformation information is used by the segmentation framework to 
provide spatial context for the three-dimensional convolutional neural network when generating 
postoperative tissue masks. 

5.4 Segmentation Model 

A three dimensional convolutional neural network receives the registered MRI volume 
as input. The model contains an encoder that extracts spatial features from the scan 
and a decoder that reconstructs the tissue mask. 

The encoder reads patterns that represent tissue, cavity space, and boundary 
transitions. The decoder creates a mask that outlines the brain and identifies resected 



areas. The network is trained on examples that present the postoperative structure as 
the target. 

The model uses a combination of spatial convolution, pooling, and dense prediction 
layers. The output is a binary mask that identifies tissue and non tissue regions. 

5.5 Training Procedure 

The model is trained through supervised learning. Each input volume is paired with a 
ground truth mask created from expert labeling. The loss function measures the 
distance between the predicted mask and the reference mask. Dice loss and voxel wise 
cross entropy are the primary measures used during training. 

Training proceeds in epochs until the model reaches stable performance. Validation 
scans are used to evaluate prediction quality throughout training. 

6. Results 

The segmentation system is evaluated with quantitative metrics that measure 
agreement between the predicted mask and the reference mask created by manual 
labeling. The results show that the model identifies tissue boundaries with clarity in 
regions that contain surgical alterations. 

 

Figure 4. Qualitative Segmentation Results in Postoperative Regions

 

Figure 4. Qualitative comparison of segmentation results in postoperative MRI slices. 
Each row shows the post-operative T1-weighted image, the expert-defined ground truth 
mask, a traditional baseline segmentation, and the proposed model’s segmentation. 
The proposed method more accurately follows the resection cavity and cortical 
boundaries, producing continuous masks with fewer missing regions and fewer 
mislabeled non-tissue areas compared to the baseline approach. 

 



6.1 Evaluation Metrics 

Three metrics are used to measure performance. 

Dice Similarity Coefficient 

The Dice coefficient measures the overlap between the predicted mask and the 
reference mask. A higher value indicates stronger agreement and more complete 
identification of tissue boundaries. 

 

Voxel Accuracy 

Voxel accuracy measures the percentage of correctly labeled voxels in the MRI volume. 
It includes tissue and non-tissue regions and reflects the overall precision of the 
segmentation model. 

Structural Consistency Score 

This score measures whether the predicted mask maintains a coherent structure across 
slices. It checks that boundaries remain consistent as the model reads different sections 
of the volume. A stable mask shows clear continuity from slice to slice. 

6.2 Quantitative Results 

The model produces consistent segmentation across the postoperative brain. The Dice 
score reaches a level that reflects strong overlap between the predicted mask and the 
manual reference. Voxel accuracy remains stable across the dataset and does not show 
large variation between scans. The structural consistency score indicates that the mask 
follows the contours of the brain and outlines the shape of the resection cavity in a 
continuous way. 

The results show that the model reads the postoperative structure with strong attention 
to boundary shape. The cavity region is identified without fragmentation, and the brain 
surface is outlined with clear detail. 

 

 

 



 

Figure 5. Quantitative Performance Metrics Across Segmentation Methods 

Figure 5. Comparison of segmentation performance between a traditional postoperative 
brain segmentation method and the proposed model. Bars show the Dice similarity 
coefficient, voxel-wise accuracy, and structural consistency score for each method, 
averaged across the dataset. The proposed model achieves higher overlap with expert 
labels, greater overall voxel accuracy, and improved structural consistency, indicating 
more reliable postoperative tissue masks.  

 

 

 

 

 

 

 



Figure 6. Distribution of Dice Scores Across Patients 

 

Figure 6. Distribution of Dice similarity coefficients for a traditional 
segmentation method and the proposed model across all postoperative 
patients in the dataset. Each box summarizes the variability in overlap 
between predicted masks and expert-defined reference masks. The 
proposed model shows higher median Dice scores and reduced spread 
compared to the traditional method, indicating both improved accuracy and 
more consistent performance across individuals. 

6.3 Spatial Analysis 

The predicted masks are examined through slice based review. Each slice shows tissue 
boundaries that align with the structure visible in the MRI. The model identifies the 
cavity as a unified region and separates it from surrounding tissue. This indicates that 
the model understands the presence of respected areas and does not confuse them 
with intact structures. 

Adjacent slices show stable segmentation with minimal irregularity. The segmentation 
maintains a coherent outline as the model moves from superior to inferior sections of 



the volume. This indicates that the network interprets the anatomy as a continuous 
three dimensional structure rather than isolated slices. 

6.4 Segmentation Behavior in Altered Regions 

Regions near the surgical site contain changes in geometry and texture. The model 
identifies these patterns and creates boundary lines that follow the shape of the cavity. 
Tissue regions that remain intact are segmented with consistent labeling. Areas that 
contain postoperative irregularity are captured in a single unified region without 
extensive breakage. 

This behavior indicates that the model learns features that represent postoperative 
structure. The segmentation reflects the true outline of the brain and does not attempt to 
impose a simplified anatomical map. 

7. Discussion 

7.1 Interpretation of Segmentation Quality 

The results show that the model creates postoperative masks that follow the natural 
shape of the brain with accuracy. The stability of the Dice coefficient, voxel accuracy, 
and structural consistency score indicates that the method produces segmentation that 
reflects real anatomical structure. The model identifies the cavity as a continuous region 
and maintains clear separation between tissue and non tissue areas. 

The slice based inspection shows that the mask does not collapse or distort at points 
where the anatomy contains irregular shape. The model produces clean boundaries in 
regions that are typically challenging for traditional methods. The system reads 
postoperative images as unique structures and does not rely on imposed templates. 

7.2 Importance of Spatial Awareness 

Post surgical MRI scans contain modified geometry. The shape of the cavity and 
surrounding structures creates complex patterns that require spatial awareness. The 
use of deformable registration helps the system understand the relation between pre 
operative and post operative tissue. The deformation field provides context that 
supports the network during segmentation. 

The three dimensional nature of the model improves its ability to interpret depth, 
volume, and shape. The network reads each voxel in relation to its surrounding region. 
This results in continuous boundaries and consistent labeling throughout the volume. 



7.3 Relevance to Functional and Structural Studies 

Segmentation is central to connectivity analysis and structural evaluation. A mask that 
reflects the real shape of the brain supports reliable research and accurate clinical 
interpretation. When a region contains a cavity or an altered surface, the location of the 
boundary influences the measurement of functional activity, volume, and network 
pattern. 

Postoperative populations rely on imaging for long term monitoring. A model that 
produces consistent and patient specific masks can support tracking of healing, 
response to treatment, and changes in neural activity. This encourages imaging 
pipelines that adapt to the anatomical features present in each patient. 

7.4 Practical Use in Clinical Settings 

A postoperative segmentation method must support routine imaging work. It must 
produce stable masks that require minimal manual correction. The model presented in 
this study moves toward that goal by creating clear boundaries and capturing the shape 
of the brain without large errors. 

The use of a learning based system encourages workflows that do not rely heavily on 
predefined models. Each patient scan contains a unique structure, and the method 
reflects the need for individualized processing. This supports research environments 
that study varied postoperative populations and clinical environments that monitor 
patient progress over time. 

7.5 Potential Expansion of the Framework 

The current approach sets a foundation for more advanced modeling. Future variations 
may include multimodal data such as T2 weighted scans, FLAIR images, and diffusion 
imaging. These additional channels provide richer information and can assist the model 
in identifying postoperative structures with more precision. 

The model may also be expanded to predict multiple tissue classes rather than a single 
binary mask. This includes gray matter, white matter, and cerebrospinal fluid. This 
expansion creates opportunities for deeper anatomical mapping and more 
comprehensive analysis. 

 

7. Discussion 



7.1 Interpretation of Model Behavior 

The segmentation model shows a consistent ability to read postoperative MRI scans. 
The structure of the cavity is identified as a single region with clean borders. The 
surrounding cortex is labeled with clarity, and the model does not create irregular 
shapes or fragmented outlines. These observations indicate that the model learns the 
patterns that appear in tissue near a resection site. The shape of the brain remains 
stable in the predicted mask, and the cavity maintains a clear separation from the 
remaining tissue. 

The behavior of the model suggests that it is sensitive to local anatomical cues. Each 
voxel is evaluated in relation to its neighborhood. This supports the creation of 
boundaries that follow natural curves and angles. The model does not rely on rigid ideas 
of what the anatomy should look like. It reads the features that are present in the image. 

7.2 Influence of Registration on Segmentation 

The registration step plays a clear role in this system. The alignment of volumes 
provides context about the way the tissue shifted during surgery. The model interprets 
this information and uses it to build an internal map of the postoperative brain. The 
deformation field highlights areas that experienced spatial change, and this guides the 
model as it learns to identify tissue edges. 

This step does not replace segmentation. Instead, it gives the model structure that 
improves its understanding of the image. The combination of alignment and learning 
makes the system more responsive to the shape of the postoperative brain. 

7.3 Implications for Neuroimaging Analysis 

Segmentation is part of many scientific and clinical workflows. Any analysis that uses 
region boundaries depends on the accuracy of the mask. In postoperative research, 
segmentation affects connectivity studies, regional volume measurements, and 
structural interpretation. A mask that reflects the true outline of the brain provides a 
stronger foundation for these studies. 

In a clinical environment, segmentation supports review of healing patterns, cavity 
shape, and changes in volume. A system that produces stable masks can reduce 
manual editing and create consistent output that aligns with the patient’s imaging 
history. 

7.4 Generalization Across Patients 



The model operates on scans from multiple individuals. Each patient presents a unique 
cavity shape and a unique structural layout. The consistent performance across these 
individuals shows that the model learns fundamental features that describe the 
postoperative brain. It does not copy a single pattern. It extracts principles that apply 
across the dataset. 

The masks maintain continuity across slices and do not produce irregular patterns that 
vary between volumes. This shows that the network treats the brain as a three 
dimensional object and not as a sequence of isolated images. 

7.5 Role of Learning Based Segmentation in Postoperative Imaging 

A learning based system offers capabilities that are well suited to postoperative 
imaging. The model can adapt to cases where the anatomy contains variation. The 
system can identify fine textures and patterns that appear in resection cavities and can 
respond appropriately. This creates a segmentation result that holds its shape across 
different volumes. 

This type of system can support clinics and research labs that work with patients who 
undergo surgical procedures. It provides a method for generating maps that reflect the 
actual anatomy seen in the MRI and supports imaging pipelines that require patient 
specific accuracy. 

7. Discussion 

7.1 Understanding the Model Output 

The segmentation model produces masks that reflect the structure seen in 
postoperative MRI scans with clarity and consistency. The predicted contours follow the 
surface of the brain in a steady way, and the cavity that forms after the surgical 
procedure appears as a unified region with clear separation from the surrounding tissue. 
The spatial layout of the brain remains recognizable throughout the volume, and the 
predicted mask preserves the major anatomical landmarks that remain present in the 
scan. 

The model appears to respond strongly to local gradients and intensity patterns. These 
patterns help the network determine where tissue boundaries begin and end. The 
smooth transitions between slices indicate that the model interprets the brain as a 
continuous shape rather than a collection of independent planes. This quality supports a 
stable reading of the anatomy and reduces irregularities in the final mask. 



7.2 Influence of Data Representation on Accuracy 

The preprocessing and normalization steps create an environment in which the network 
can recognize structural cues with fewer disruptions. The alignment of each MRI volume 
helps the model view the postoperative brain with consistent orientation. The 
registration step also provides a map of structural adjustment that occurs during 
surgery. This information gives the network additional context about how tissue shifts 
within the skull. 

The representation of the data influences the model’s ability to identify the cavity and its 
surrounding structures. A clear intensity distribution helps the model differentiate 
between tissue classes, while consistent spatial alignment supports continuity in the 
predicted mask. These elements work together to create segmentation that matches the 
observable shape of the postoperative brain. 

7.3 Significance for Neuroimaging Workflows 

Segmentation strongly influences the quality of many downstream tasks in 
neuroimaging. Functional analysis depends on the correct identification of anatomical 
borders. Structural studies rely on accurate labeling of brain regions. Clinical evaluation 
requires clear views of tissue that remains present after surgery. A segmentation model 
that captures these structures with accuracy plays an important role in each of these 
settings. 

The model presented in this study supports a wide range of imaging tasks. When a 
mask aligns with the true shape of the brain, connectivity measurements become more 
reliable, regional volume estimates become more stable, and the interpretation of 
structural changes becomes more grounded. The segmentation model contributes to 
the accuracy of these tasks by providing an anatomical outline that reflects the true 
content of the MRI. 

7.4 Consistency Across Volumetric Slices 

Review of individual slices shows that the segmentation model maintains its quality 
across the entire MRI volume. Each slice presents a boundary that aligns with the 
visible structure. The cavity appears in a shape that matches the underlying image. 
Tissue margins remain smooth and predictable, and the segmentation does not exhibit 
sudden irregularities. This behavior demonstrates that the model understands the 
continuity of the brain and treats the volume as a connected space. 

7.5 Potential Benefits for Clinical and Research Settings 



Postoperative imaging often requires interpretation from specialists who examine the 
brain at different time points following surgery. A system that can produce a clean and 
patient specific segmentation may provide support for this process. When masks are 
consistent and accurate, clinicians may spend less time editing boundaries or correcting 
mislabeled regions. Researchers who examine longitudinal imaging data may also 
benefit from stable segmentation because it supports clearer comparisons across scans 
taken at different stages of recovery. 

The segmentation system described in this study moves toward these goals by 
producing masks that remain consistent with the image content. The method aligns with 
the needs of clinical teams and research groups that work with postoperative 
populations and require segmentation that reflects each patient’s unique anatomical 
layout. 

8. Future Work 

8.1 Expansion of Imaging Modalities 

The segmentation process can grow in strength when it receives information from 
several imaging sequences. T1 weighted scans offer clear structural detail, but other 
sequences can introduce additional cues about tissue boundaries. T2 weighted imaging 
highlights fluid and soft tissue in a way that may offer clarity near the cavity. FLAIR 
imaging may reveal subtle postoperative changes that are not visible in standard 
structural scans. Diffusion imaging may reveal the orientation of remaining pathways. A 
system that draws from several modalities may create masks that represent the 
postoperative brain with more detail. 

8.2 Extension to Multi Class Segmentation 

The method in this study predicts a single combined mask that represents all tissue. A 
future system may predict several tissue classes. These classes include gray matter, 
white matter, and cerebrospinal fluid. A multi class prediction may support more 
advanced analysis such as cortical thickness measurement or region specific 
connectivity mapping. A multi class model may also be useful for clinicians who want to 
examine structural changes in each tissue category after surgery. 

8.3 Larger and More Diverse Datasets 

Post surgical imaging varies between individuals because each case presents a 
different surgical plan and a different anatomical structure. A larger dataset that contains 
a wide range of cases may help the model learn patterns that generalize across many 



patient types. A dataset that contains cases from different clinics may show variation in 
imaging equipment and scanning protocols, which may help the model interpret a wider 
set of postoperative images. A system that learns from a diverse dataset may produce 
more stable masks in future clinical environments. 

8.4 Integration into Clinical Image Review Systems 

A segmentation system becomes more useful when it is placed in a workflow that 
clinicians use every day. Integrating this system into viewing platforms may allow clinical 
teams to examine predicted masks along with the original MRI. A platform may present 
the mask as a transparent overlay that follows the anatomy. This can assist in reviewing 
healing patterns or in monitoring long term structural changes. A system that appears in 
routine practice may support teams that review many postoperative scans in a short 
amount of time. 

8.5 Longitudinal Post Surgical Tracking 

Post surgical change does not occur in a single moment. The brain continues to 
organize itself months and years after the procedure. A model that tracks the structure 
of the brain at several time points may show patterns in the healing process. A 
longitudinal model may identify regions that maintain stable shape and regions that 
adjust over time. This may offer insight into the effect of surgery on neural recovery and 
long term function. 

9. Conclusion 

This study presents a segmentation system that reads the structure of the postoperative 
brain and produces masks that reflect its true shape. The system uses a combination of 
aligned imaging, standardized preparation, and a three dimensional learning model that 
responds to the features present in the MRI volume. The predicted masks follow the 
contour of the brain and represent the cavity as a unified region. This provides a 
foundation for imaging pipelines that require patient specific interpretation. 

The results show that the model understands the geometry of the postoperative brain 
and identifies tissue boundaries with clarity. The boundaries remain stable across slices, 
and the segmentation maintains continuity throughout the volume. This supports 
imaging tasks that depend on structural accuracy, including connectivity studies, 
regional volume analysis, and clinical review. 

The segmentation system offers a direction for future research and clinical support. It 
highlights the need for patient specific imaging tools in postoperative care and 



encourages the development of computational methods that respond to individual 
anatomy. This study supports a growing interest in machine learning within 
neuroimaging and contributes to a broader effort to create imaging tools that improve 
understanding of the human brain. 
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