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Abstract

Post surgical brain imaging creates a unique challenge in MRI analysis. When cortical
tissue is removed during resection procedures, the anatomy of the brain changes in
ways that traditional imaging pipelines cannot interpret. Many standard tools assume a
complete brain structure, which leads to inaccurate masks, incorrect region boundaries,
and unreliable functional connectivity measurements.

This work presents a machine learning framework that produces accurate tissue
segmentation for MRI scans taken after a surgical resection. The approach uses
deformable registration, nuisance regression, and a three dimensional convolutional
neural network that learns the shape and structure of the post operative brain. The
method develops a patient specific mask that reflects the true shape of the brain after
surgery.

The results show improvement in segmentation accuracy around resection areas. The
method produces clearer anatomical boundaries and stronger agreement with expert
interpretation. This study demonstrates how machine learning can support clinical
imaging by creating tissue maps that reflect each patient’s unique postoperative
anatomy, and it encourages the use of computational tools in advanced neuroimaging
workflows.

1. Introduction

Brain imaging plays a central role in understanding neurological function and guiding
clinical treatment. Magnetic Resonance Imaging is one of the most important tools
available to clinicians, and it supports diagnosis, monitoring of disease progression, and
evaluation of surgical outcomes. When a patient undergoes a resection procedure, the
structure of the brain changes in a way that requires specialized interpretation. Regions
of tissue are removed to treat epilepsy, tumors, or other neurological conditions, and the
resulting postoperative scans contain cavities, shifted landmarks, and altered
anatomical borders. These changes create a complex environment for automated
segmentation systems.

Conventional neuroimaging pipelines are often created for healthy or intact anatomical
structures. They use templates or population averages that assume the presence of
complete tissue regions. When these methods are applied to a postoperative scan, they
may produce missing labels, inconsistent boundaries, or masks that do not match the
true shape of the brain. Accurate segmentation is essential because it influences every
downstream analysis, including functional connectivity studies, structural mapping, and
clinical evaluation.



Machine learning provides an opportunity to create tissue masks that reflect the actual
postoperative anatomy. Instead of relying on fixed templates, a learning based system
can adapt to patient specific structures and can identify patterns that traditional
algorithms cannot model. Three dimensional convolutional neural networks, deformable
registration techniques, and automated masking tools can work together to examine
regions that undergo physical change after surgery. This allows the system to create a
representation of the brain that is closer to the true structure seen in the scan.

The purpose of this study is to explore a computational approach that improves
anatomical segmentation for patients who have undergone surgical resection. The
method presented in this paper is designed to identify tissue boundaries with greater
precision in areas affected by surgical alteration. The framework offers a pathway for
creating postoperative segmentation that supports functional research, clinical review,
and long term monitoring. The ultimate goal is to create imaging tools that are well
suited to each individual patient and that contribute to more accurate scientific and
clinical insight.

2. Background

2.1 Surgical Resection and Brain Imaging

A resection procedure removes a portion of neural tissue in order to reduce seizure
activity, remove abnormal growths, or correct anatomical problems. The removal of
tissue alters the structure of the brain in both shape and spatial orientation. This
process affects the surrounding tissue and changes the organization of cortical and
subcortical regions. Magnetic resonance imaging captures the new structure of the
brain and allows researchers and clinicians to study the effects of the procedure.

However, the appearance of the brain after a resection contains features that standard
segmentation models do not interpret correctly. Cavities may appear irregular,
boundaries between tissues may shift, and structural landmarks used in automated
systems may no longer exist. These unique changes require specialized algorithms that
can map tissue without relying on rigid assumptions about shape or structure.

2.2 Importance of Accurate Segmentation

Segmentation identifies and separates tissue types so that further analysis can occur. It
is crucial for measuring volume, monitoring the impact of treatment, and studying
network level changes in connectivity. In functional MRI, segmentation determines
which regions are included in network analysis. In structural MRI, segmentation defines



the shape and size of tissue that researchers measure. In clinical review, segmentation
supports evaluation of healing, scarring, or altered function.

When segmentation does not reflect true anatomy, the results of later analysis become
uncertain. An inaccurate mask may include non-tissue regions or exclude meaningful
tissue. This can influence conclusions drawn from connectivity studies, structural
volume estimates, and clinical reports. Accurate postoperative segmentation is essential
for creating reliable scientific and clinical interpretations.

2.3 Machine Learning in Medical Image Segmentation

Machine learning introduces a flexible way to interpret complex brain images. Instead of
relying on fixed rules, a model can learn from many examples of tissue structure and
can identify features that are not obvious to conventional methods. Convolutional neural
networks can detect three dimensional texture patterns and can interpret tissue
boundaries even when landmarks are altered. Deformable registration algorithms allow
the model to adjust to the unique structure of each patient and to map the brain without
enforcing a single standard shape.

These tools allow researchers to explore segmentation in brains that contain structural
changes. They also encourage the development of patient specific imaging pipelines
that match the individual anatomy seen in the scan.
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3. Related Work

Segmentation is an active field in neuroimaging research. Many studies have explored
ways to identify tissue types in healthy anatomical scans. Traditional tools are created
for intact brains and rely on standardized templates. They are commonly used in
research involving large populations. These tools can process scans efficiently and can
create consistent labels when the brain follows expected structural patterns.

Research in machine learning has expanded the ability to segment brain images by
allowing models to learn spatial patterns in three dimensional data. Convolutional neural
networks have achieved strong performance in differentiating tissue classes in medical



imaging. They can analyze volume, intensity, and spatial relationships within the brain.
Models such as U Net and variations of encoder decoder networks have been used
successfully in various medical segmentation tasks.

Studies involving postoperative imaging are more limited. The structural changes
created by a resection require methods that can adapt to irregular shapes. Some
research has investigated deformable registration for postoperative images. These
methods adjust an anatomical template to match the new shape of the brain. Other
research has introduced patient specific masks that account for altered structure. These
approaches provide a foundation for developing learning based methods that
understand the individualized shape of a postoperative brain.

The work presented in this paper builds on these ideas by combining registration
methods with a learning based segmentation model. The system is designed to interpret
the unique patterns found in postoperative scans while maintaining the flexibility needed
to adapt to structural differences between patients.

4. Problem Statement

Post surgical MRI scans contain structural features that do not appear in standard
anatomical datasets. Resection cavities, altered tissue borders, and local geometric
deformation create a situation where many common segmentation tools do not provide
accurate masks. The core problem is the absence of a segmentation method that can
read the postoperative anatomy in a reliable way.

A segmentation model must learn the appearance of altered tissue regions. It must also
recognize the shape of cavities that form after surgery. The system must interpret
nearby structures without relying on assumptions drawn from intact brains. A model that
produces masks for this environment requires exposure to patient specific changes and
must treat each scan as a unique case.

This creates a clear objective. The goal is to design a segmentation framework that
reads the postoperative brain with attention to tissue shape, cavity structure, and spatial
position. The framework must produce masks that match the true outline of the brain in
the MRI volume.

5. Methods

This section describes the components of the segmentation system. The design follows
a sequence that prepares the MRI scans, aligns them, and trains a model that predicts
tissue masks with attention to postoperative anatomy.



Figure 2. Postoperative Brain Tissue Segmentation Pipeline
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Figure 2. Overview of the postoperative brain tissue segmentation pipeline. Pre- and
post-operative T1-weighted MRI volumes are first preprocessed through orientation
alignment, skull stripping, and intensity normalization. A deformable registration step
then estimates a deformation field that maps the pre-operative anatomy to the
post-operative anatomy and captures local shifts around the resection site. The
registered volumes and deformation information are passed to a three-dimensional
convolutional neural network, which predicts a patient-specific postoperative tissue
mask that outlines the brain and resection cavity.

5.1 Dataset

The imaging dataset contains pre operative and post operative MRI scans. Each scan
presents two volumes from the same patient. The pre operative scan shows the
structure that existed before tissue removal. The post operative scan shows the new
anatomy created by the resection.

The dataset includes T1 weighted volumes with consistent resolution. Each volume is
inspected to confirm that the surgical cavity and surrounding structures are visible.
Volumes with motion artifacts or incomplete slices are removed from the dataset to
maintain quality.

5.2 Preprocessing

All MRI volumes are aligned to a common orientation. Each volume is skull stripped
through a basic masking step that removes non brain tissue. This prepares the volume
for registration and reduces unnecessary background information.



Intensity values are normalized to reduce variation between scans. The goal is to create
a stable input space for the segmentation model. Normalization is applied equally
across all volumes.

5.3 Registration

A deformable registration algorithm aligns the pre operative and post operative scans.
The purpose is to understand how the brain shifted after surgery and to supply the
model with spatial context. The registration step produces a deformation field that maps
the pre operative shape to the post operative shape.

This deformation field provides information about local stretching, compression, and
displacement. The model uses this information to understand the shape of the resection
cavity and the surrounding structures.

Figure 3. Example Deformation Field Between Pre- and Post-Operative MRI
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Figure 3. Example deformation field illustrating the spatial transformation between pre-operative
and post-operative MRI volumes for a single patient. Vectors indicate local displacement of
tissue induced by surgical resection, highlighting regions of expansion and compression around
the resection cavity. This deformation information is used by the segmentation framework to
provide spatial context for the three-dimensional convolutional neural network when generating
postoperative tissue masks.

5.4 Segmentation Model

A three dimensional convolutional neural network receives the registered MRI volume
as input. The model contains an encoder that extracts spatial features from the scan
and a decoder that reconstructs the tissue mask.

The encoder reads patterns that represent tissue, cavity space, and boundary
transitions. The decoder creates a mask that outlines the brain and identifies resected



areas. The network is trained on examples that present the postoperative structure as
the target.

The model uses a combination of spatial convolution, pooling, and dense prediction
layers. The output is a binary mask that identifies tissue and non tissue regions.

5.5 Training Procedure

The model is trained through supervised learning. Each input volume is paired with a
ground truth mask created from expert labeling. The loss function measures the
distance between the predicted mask and the reference mask. Dice loss and voxel wise
cross entropy are the primary measures used during training.

Training proceeds in epochs until the model reaches stable performance. Validation
scans are used to evaluate prediction quality throughout training.

6. Results

The segmentation system is evaluated with quantitative metrics that measure
agreement between the predicted mask and the reference mask created by manual
labeling. The results show that the model identifies tissue boundaries with clarity in
regions that contain surgical alterations.

Figure 4. Qualitative Segmentation Results in Postoperative Regions
Post-Op MRI Ground Truth Mask Baseline Segmentation Proposed Model

Figure 4. Qualitative comparison of segmentation results in postoperative MRI slices.
Each row shows the post-operative T1-weighted image, the expert-defined ground truth
mask, a traditional baseline segmentation, and the proposed model's segmentation.
The proposed method more accurately follows the resection cavity and cortical
boundaries, producing continuous masks with fewer missing regions and fewer
mislabeled non-tissue areas compared to the baseline approach.




6.1 Evaluation Metrics

Three metrics are used to measure performance.

Dice Similarity Coefficient

The Dice coefficient measures the overlap between the predicted mask and the
reference mask. A higher value indicates stronger agreement and more complete
identification of tissue boundaries.

Voxel Accuracy

Voxel accuracy measures the percentage of correctly labeled voxels in the MRI volume.
It includes tissue and non-tissue regions and reflects the overall precision of the
segmentation model.

Structural Consistency Score

This score measures whether the predicted mask maintains a coherent structure across
slices. It checks that boundaries remain consistent as the model reads different sections
of the volume. A stable mask shows clear continuity from slice to slice.

6.2 Quantitative Results

The model produces consistent segmentation across the postoperative brain. The Dice
score reaches a level that reflects strong overlap between the predicted mask and the
manual reference. Voxel accuracy remains stable across the dataset and does not show
large variation between scans. The structural consistency score indicates that the mask
follows the contours of the brain and outlines the shape of the resection cavity in a
continuous way.

The results show that the model reads the postoperative structure with strong attention
to boundary shape. The cavity region is identified without fragmentation, and the brain
surface is outlined with clear detail.



Figure 5. Quantitative Performance Metrics Across Segmentation Methods

Score

1.0

0.8

0.6

0.4

0.2

0.0

Performance Metrics Across Methods

B Dice
B Voxel Accuracy
B Structural Consistency

Traditional Proposed

Figure 5. Comparison of segmentation performance between a traditional postoperative
brain segmentation method and the proposed model. Bars show the Dice similarity
coefficient, voxel-wise accuracy, and structural consistency score for each method,
averaged across the dataset. The proposed model achieves higher overlap with expert
labels, greater overall voxel accuracy, and improved structural consistency, indicating
more reliable postoperative tissue masks.



Figure 6. Distribution of Dice Scores Across Patients
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Figure 6. Distribution of Dice similarity coefficients for a traditional
segmentation method and the proposed model across all postoperative
patients in the dataset. Each box summarizes the variability in overlap
between predicted masks and expert-defined reference masks. The
proposed model shows higher median Dice scores and reduced spread
compared to the traditional method, indicating both improved accuracy and
more consistent performance across individuals.

6.3 Spatial Analysis

The predicted masks are examined through slice based review. Each slice shows tissue
boundaries that align with the structure visible in the MRI. The model identifies the
cavity as a unified region and separates it from surrounding tissue. This indicates that
the model understands the presence of respected areas and does not confuse them
with intact structures.

Adjacent slices show stable segmentation with minimal irregularity. The segmentation
maintains a coherent outline as the model moves from superior to inferior sections of



the volume. This indicates that the network interprets the anatomy as a continuous
three dimensional structure rather than isolated slices.

6.4 Segmentation Behavior in Altered Regions

Regions near the surgical site contain changes in geometry and texture. The model
identifies these patterns and creates boundary lines that follow the shape of the cavity.
Tissue regions that remain intact are segmented with consistent labeling. Areas that
contain postoperative irregularity are captured in a single unified region without
extensive breakage.

This behavior indicates that the model learns features that represent postoperative
structure. The segmentation reflects the true outline of the brain and does not attempt to
impose a simplified anatomical map.

7. Discussion

7.1 Interpretation of Segmentation Quality

The results show that the model creates postoperative masks that follow the natural
shape of the brain with accuracy. The stability of the Dice coefficient, voxel accuracy,
and structural consistency score indicates that the method produces segmentation that
reflects real anatomical structure. The model identifies the cavity as a continuous region
and maintains clear separation between tissue and non tissue areas.

The slice based inspection shows that the mask does not collapse or distort at points
where the anatomy contains irregular shape. The model produces clean boundaries in
regions that are typically challenging for traditional methods. The system reads
postoperative images as unique structures and does not rely on imposed templates.

7.2 Importance of Spatial Awareness

Post surgical MRI scans contain modified geometry. The shape of the cavity and
surrounding structures creates complex patterns that require spatial awareness. The
use of deformable registration helps the system understand the relation between pre
operative and post operative tissue. The deformation field provides context that
supports the network during segmentation.

The three dimensional nature of the model improves its ability to interpret depth,
volume, and shape. The network reads each voxel in relation to its surrounding region.
This results in continuous boundaries and consistent labeling throughout the volume.



7.3 Relevance to Functional and Structural Studies

Segmentation is central to connectivity analysis and structural evaluation. A mask that
reflects the real shape of the brain supports reliable research and accurate clinical
interpretation. When a region contains a cavity or an altered surface, the location of the
boundary influences the measurement of functional activity, volume, and network
pattern.

Postoperative populations rely on imaging for long term monitoring. A model that
produces consistent and patient specific masks can support tracking of healing,
response to treatment, and changes in neural activity. This encourages imaging
pipelines that adapt to the anatomical features present in each patient.

7.4 Practical Use in Clinical Settings

A postoperative segmentation method must support routine imaging work. It must
produce stable masks that require minimal manual correction. The model presented in
this study moves toward that goal by creating clear boundaries and capturing the shape
of the brain without large errors.

The use of a learning based system encourages workflows that do not rely heavily on
predefined models. Each patient scan contains a unique structure, and the method
reflects the need for individualized processing. This supports research environments
that study varied postoperative populations and clinical environments that monitor
patient progress over time.

7.5 Potential Expansion of the Framework

The current approach sets a foundation for more advanced modeling. Future variations
may include multimodal data such as T2 weighted scans, FLAIR images, and diffusion
imaging. These additional channels provide richer information and can assist the model
in identifying postoperative structures with more precision.

The model may also be expanded to predict multiple tissue classes rather than a single
binary mask. This includes gray matter, white matter, and cerebrospinal fluid. This
expansion creates opportunities for deeper anatomical mapping and more
comprehensive analysis.

7. Discussion



7.1 Interpretation of Model Behavior

The segmentation model shows a consistent ability to read postoperative MRI scans.
The structure of the cavity is identified as a single region with clean borders. The
surrounding cortex is labeled with clarity, and the model does not create irregular
shapes or fragmented outlines. These observations indicate that the model learns the
patterns that appear in tissue near a resection site. The shape of the brain remains
stable in the predicted mask, and the cavity maintains a clear separation from the
remaining tissue.

The behavior of the model suggests that it is sensitive to local anatomical cues. Each
voxel is evaluated in relation to its neighborhood. This supports the creation of
boundaries that follow natural curves and angles. The model does not rely on rigid ideas
of what the anatomy should look like. It reads the features that are present in the image.

7.2 Influence of Registration on Segmentation

The registration step plays a clear role in this system. The alignment of volumes
provides context about the way the tissue shifted during surgery. The model interprets
this information and uses it to build an internal map of the postoperative brain. The
deformation field highlights areas that experienced spatial change, and this guides the
model as it learns to identify tissue edges.

This step does not replace segmentation. Instead, it gives the model structure that
improves its understanding of the image. The combination of alignment and learning
makes the system more responsive to the shape of the postoperative brain.

7.3 Implications for Neuroimaging Analysis

Segmentation is part of many scientific and clinical workflows. Any analysis that uses
region boundaries depends on the accuracy of the mask. In postoperative research,
segmentation affects connectivity studies, regional volume measurements, and
structural interpretation. A mask that reflects the true outline of the brain provides a
stronger foundation for these studies.

In a clinical environment, segmentation supports review of healing patterns, cavity
shape, and changes in volume. A system that produces stable masks can reduce
manual editing and create consistent output that aligns with the patient’s imaging
history.

7.4 Generalization Across Patients



The model operates on scans from multiple individuals. Each patient presents a unique
cavity shape and a unique structural layout. The consistent performance across these
individuals shows that the model learns fundamental features that describe the
postoperative brain. It does not copy a single pattern. It extracts principles that apply
across the dataset.

The masks maintain continuity across slices and do not produce irregular patterns that
vary between volumes. This shows that the network treats the brain as a three
dimensional object and not as a sequence of isolated images.

7.5 Role of Learning Based Segmentation in Postoperative Imaging

A learning based system offers capabilities that are well suited to postoperative
imaging. The model can adapt to cases where the anatomy contains variation. The
system can identify fine textures and patterns that appear in resection cavities and can
respond appropriately. This creates a segmentation result that holds its shape across
different volumes.

This type of system can support clinics and research labs that work with patients who
undergo surgical procedures. It provides a method for generating maps that reflect the
actual anatomy seen in the MRI and supports imaging pipelines that require patient
specific accuracy.

7. Discussion

7.1 Understanding the Model Output

The segmentation model produces masks that reflect the structure seen in
postoperative MRI scans with clarity and consistency. The predicted contours follow the
surface of the brain in a steady way, and the cavity that forms after the surgical
procedure appears as a unified region with clear separation from the surrounding tissue.
The spatial layout of the brain remains recognizable throughout the volume, and the
predicted mask preserves the major anatomical landmarks that remain present in the
scan.

The model appears to respond strongly to local gradients and intensity patterns. These
patterns help the network determine where tissue boundaries begin and end. The
smooth transitions between slices indicate that the model interprets the brain as a
continuous shape rather than a collection of independent planes. This quality supports a
stable reading of the anatomy and reduces irregularities in the final mask.



7.2 Influence of Data Representation on Accuracy

The preprocessing and normalization steps create an environment in which the network
can recognize structural cues with fewer disruptions. The alignment of each MRI volume
helps the model view the postoperative brain with consistent orientation. The
registration step also provides a map of structural adjustment that occurs during
surgery. This information gives the network additional context about how tissue shifts
within the skull.

The representation of the data influences the model’s ability to identify the cavity and its
surrounding structures. A clear intensity distribution helps the model differentiate
between tissue classes, while consistent spatial alignment supports continuity in the
predicted mask. These elements work together to create segmentation that matches the
observable shape of the postoperative brain.

7.3 Significance for Neuroimaging Workflows

Segmentation strongly influences the quality of many downstream tasks in
neuroimaging. Functional analysis depends on the correct identification of anatomical
borders. Structural studies rely on accurate labeling of brain regions. Clinical evaluation
requires clear views of tissue that remains present after surgery. A segmentation model
that captures these structures with accuracy plays an important role in each of these
settings.

The model presented in this study supports a wide range of imaging tasks. When a
mask aligns with the true shape of the brain, connectivity measurements become more
reliable, regional volume estimates become more stable, and the interpretation of
structural changes becomes more grounded. The segmentation model contributes to
the accuracy of these tasks by providing an anatomical outline that reflects the true
content of the MRI.

7.4 Consistency Across Volumetric Slices

Review of individual slices shows that the segmentation model maintains its quality
across the entire MRI volume. Each slice presents a boundary that aligns with the
visible structure. The cavity appears in a shape that matches the underlying image.
Tissue margins remain smooth and predictable, and the segmentation does not exhibit
sudden irregularities. This behavior demonstrates that the model understands the
continuity of the brain and treats the volume as a connected space.

7.5 Potential Benefits for Clinical and Research Settings



Postoperative imaging often requires interpretation from specialists who examine the
brain at different time points following surgery. A system that can produce a clean and
patient specific segmentation may provide support for this process. When masks are
consistent and accurate, clinicians may spend less time editing boundaries or correcting
mislabeled regions. Researchers who examine longitudinal imaging data may also
benefit from stable segmentation because it supports clearer comparisons across scans
taken at different stages of recovery.

The segmentation system described in this study moves toward these goals by
producing masks that remain consistent with the image content. The method aligns with
the needs of clinical teams and research groups that work with postoperative
populations and require segmentation that reflects each patient’s unique anatomical
layout.

8. Future Work

8.1 Expansion of Imaging Modalities

The segmentation process can grow in strength when it receives information from
several imaging sequences. T1 weighted scans offer clear structural detail, but other
sequences can introduce additional cues about tissue boundaries. T2 weighted imaging
highlights fluid and soft tissue in a way that may offer clarity near the cavity. FLAIR
imaging may reveal subtle postoperative changes that are not visible in standard
structural scans. Diffusion imaging may reveal the orientation of remaining pathways. A
system that draws from several modalities may create masks that represent the
postoperative brain with more detail.

8.2 Extension to Multi Class Segmentation

The method in this study predicts a single combined mask that represents all tissue. A
future system may predict several tissue classes. These classes include gray matter,
white matter, and cerebrospinal fluid. A multi class prediction may support more
advanced analysis such as cortical thickness measurement or region specific
connectivity mapping. A multi class model may also be useful for clinicians who want to
examine structural changes in each tissue category after surgery.

8.3 Larger and More Diverse Datasets

Post surgical imaging varies between individuals because each case presents a
different surgical plan and a different anatomical structure. A larger dataset that contains
a wide range of cases may help the model learn patterns that generalize across many



patient types. A dataset that contains cases from different clinics may show variation in
imaging equipment and scanning protocols, which may help the model interpret a wider
set of postoperative images. A system that learns from a diverse dataset may produce
more stable masks in future clinical environments.

8.4 Integration into Clinical Image Review Systems

A segmentation system becomes more useful when it is placed in a workflow that
clinicians use every day. Integrating this system into viewing platforms may allow clinical
teams to examine predicted masks along with the original MRI. A platform may present
the mask as a transparent overlay that follows the anatomy. This can assist in reviewing
healing patterns or in monitoring long term structural changes. A system that appears in
routine practice may support teams that review many postoperative scans in a short
amount of time.

8.5 Longitudinal Post Surgical Tracking

Post surgical change does not occur in a single moment. The brain continues to
organize itself months and years after the procedure. A model that tracks the structure
of the brain at several time points may show patterns in the healing process. A
longitudinal model may identify regions that maintain stable shape and regions that
adjust over time. This may offer insight into the effect of surgery on neural recovery and
long term function.

9. Conclusion

This study presents a segmentation system that reads the structure of the postoperative
brain and produces masks that reflect its true shape. The system uses a combination of
aligned imaging, standardized preparation, and a three dimensional learning model that
responds to the features present in the MRI volume. The predicted masks follow the
contour of the brain and represent the cavity as a unified region. This provides a
foundation for imaging pipelines that require patient specific interpretation.

The results show that the model understands the geometry of the postoperative brain
and identifies tissue boundaries with clarity. The boundaries remain stable across slices,
and the segmentation maintains continuity throughout the volume. This supports
imaging tasks that depend on structural accuracy, including connectivity studies,
regional volume analysis, and clinical review.

The segmentation system offers a direction for future research and clinical support. It
highlights the need for patient specific imaging tools in postoperative care and



encourages the development of computational methods that respond to individual
anatomy. This study supports a growing interest in machine learning within
neuroimaging and contributes to a broader effort to create imaging tools that improve
understanding of the human brain.
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